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1 Introduction 

We consider here a UML 2 collaboration describing the structure of a service as a set of 

roles and the sub-collaborations that take place between them. Such sub-collaborations are 

represented as UML collaboration uses, and can themselves be composite collaborations or 

elementary collaborations, which are no further decomposed. 

We assume the behavior of an elementary collaboration is described with the help of a 

UML 2 sequence diagram. The behavior of a composite collaboration is described as a 

choreography of its sub-collaborations. Such choreography is specified using an UML 2 

activity diagram, where each nodes is a CallBehaviorAction that invokes the behavior 

associated with a collaboration type and made available via a collaboration use (in the 

diagram describing the structure of the composite collaboration). 

Given a choreography, we are interested in finding a set of communicating role behaviors 

whose joint behavior is precisely the specified by the choreography. Whenever it is possible 

to find such set of role behaviors we say that the choreography is direct realizability. In 
Section 5 we define the notion of direct realizability of a choreography formally. To do that 

we first introduce, in Section 2, the formal syntax of sequence diagrams, and in Section 3 we 
present the formal syntax of choreography graphs and define the set of all traces (i.e. 

sequences of events) defined by a choreography. In Section 4 we introduce the notion of 
directly realized system, and define the set of all traces generated by the execution of such 

system. Finally, in Section 6 we present some propositions and their proofs. 

2 Formal syntax of sequence diagrams 

A basic sequence diagram defines a labeled directed acyclic graph that can be described by 

a tuple ),( <= ,rcv,R,E,M,Σ,bSD φλ  where 

• R  is a set of lifelines (or roles) 

• ! ?E E E= ∪  is a set of sending ( !E ) and receiving ( ?E ) events  

• M is a set of messages and Σ  is a set of communication actions of the form p!q(m) (read 

“p sends message m to q”) and p?q(m) (read “p receives message m from q”), with 

,p q R∈  and m M∈    

• : Eλ Σ→  is a mapping that associates events with communication actions  

• : E Rφ →  is a mapping that associates events with the roles that perform them. We let 

{ (: ) , }pE e eE p Rpφ= =∈ ∈   

• 
! ?:rcv E E→  is a bijection that pairs up the sending and receiving events associated with 

the transmission of a message 

• *

!(( ) {( , ( )) : })
p

p

R

e rcv e e E
∈

< ∈< ∪= U  is a (strict) partial order on E, called the visual order. 

For each p R∈ , p<  is a total order over the events performed by p. 

 

Basic sequence diagrams can be composed to obtain more complex behaviors. In UML 2 

this is possible by means of interaction operators. Here we consider four operators: 

• Weak sequential composition (seq) of two sequence diagrams, which consists in their 

lifeline-by-lifeline concatenation, such that for each lifeline, the events of the first 
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diagram precede the events of the second diagram. Events on different lifelines are 

interleaved. 

• Alternative composition (alt) of two sequence diagrams, which describes a choice 

between them, such that in any run of the system events will be ordered according to only 

one of the diagrams. That is, alternative composition introduces alternative visual orders.  

• Parallel composition (par) of two sequence diagrams, where the events from both 

diagrams are interleaved. 

• Iterative composition (loop) of a sequence diagram, which can be seen as the weak 

sequential composition of a number of instances of that sequence diagram. 

The syntax of a composite sequence diagram (SD) is defined by the following BNF-

grammar: 

1212121  max)(min, | )  ( | )  ( | )  ( |   SDSDSDSDSDSDSDbSDSD
def

loopparaltseq=  

A composite sequence diagram will, in general, describe one or more alternative visual 

orders. The set Λ  of alternative visual orders described by a composite sequence diagram 

SD  is defined as follows: 

)},{( 11 <=Λ E , if 1  bSDSD =  
*

1 2 1 2 1 2 1 2 1 2 1 1 2 21 2{( , ) : ( {( , ) : ( ) ( )}) ,( , ) ,( , ) },e e e EE eE E E Eφ φ∪ <Λ = < ∪ <= < × = < <∪ ∈Λ∈ ∈Λ

    if 21   SDSDSD seq=  

1 2 1 2 1 1 2 21 2{( , ) : ( , ) ,( , ) }E E E EΛ = < ∪ < ∪ < ∈Λ < ∈Λ , if 21   SDSDSD par=  

1 2Λ = Λ ΛU , if 21   SDSDSD alt=  

1

min max

n

n≤ ≤

Λ = ΛU , if 
1 max)oop(min, SDSD l= , with maxmin1 ≤< , and 

1

nΛ  is the set of  

   visual orders described by 1

11 1
  −= nn
SDSDSD seq , for 1n > , and 11 SDSDn = , for 1n = . 

3 Formal syntax and traces of choreography graphs 

We use UML 2 activity diagrams (although with modified semantics) to describe the 

choreography of the sub-collaborations of a composite collaboration. Formally, we define a 
choreography graph as a directed graph defined by the tuple ),,,,( µΩIVCh →= > , where 

• V is a set of nodes that is partitioned into an initial node (
0v ) and sub-sets of 

CallBehaviorAction nodes ( AV ), control flow nodes ( CV ), accept event actions ( EV ) and 

final nodes (
FV ). The set 

CV  is in turn partitioned into decision (
DV ), merge (

MV ), fork 

( KV ) and join ( JV ) nodes. 

• I is a set of interruptible regions (i.e. dashed regions containing nodes that can be 

interrupted). 

• )( VII ∪×⊆>  is a hierarchy relation among interruptible regions and nodes. 

• 0 A C E A C F({ } ) ( )v V V V V V V∪ ∪→ ×∪ ∪ ∪⊆  is a set of directed edges between nodes, 

which is partitioned into normal ( n→ ) and interrupting edges ( i→ ). We write u v→  if 

( , )u v ∈→ . For convenience, given AVvu ∈, , we write u⇝v if either u v→  or 

vwwu n →→→→ K1  and 
A , [1 ]iw V i n∉ ∀ ∈ K  (that is, it is possible to reach v from u 

without traversing any other CallBehaviorAction).  
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Interrupting edges must have its source node inside an interruptible region and its target 

node outside the region, that is, if vu i→ , then IR ∈∃  such that uR>  and not vR > . 

• Ω  is a set of labels of the form .cu B , where cu is the name of one of the collaboration-

uses of C, and B is the sequence or activity diagram describing the behavior of the 

collaboration which cu represents an occurrence of. 

• A:Vµ Ω→  is a mapping between CallBehaviorActions and labels. 

A choreography graph, as defined above, allows specifying the following execution 

orderings: 

• Sequential execution, described with help of activity edges, which have the meaning of 
weak sequencing. 

• Parallel execution, described with help of fork and join nodes. 

• Alternative execution, described with help of decision nodes. 

• Interruption, described with help of interruptible regions and interrupting edges. The 

following constraint has to be obeyed in order to avoid deadlocks. If a 

CallBehaviorAction X is inside an interruptible region R and X leads to a join node J 

(“normal” path), then the interrupting edge leaving R must also eventually lead to J (and 

be merged with the “normal” path with help of a merge node, which should be directly 
connected to J). Obeying this constraint is not necessary if all other CallBehaviorActions 

that lead to J are also inside R. See Figure 1(a) for an example. 

 
Figure 1. (a) A choreography graph and the two possible paths through it: (b) when 

the interruption does not happen; and (c) when it happens 

Sequential, parallel and alternative execution orderings have the same semantics as the 

seq, par and alt composition operators defined for sequence diagrams in Section 2. To DEFIWNE 

the semantics of interruption we need to introduce the notion of prefix of a visual order.  

Definition (Prefix). A visual order ),( <′′E  is a prefix of a visual order ),( <E  iff  

• EE ⊂′  

• if !Ee ′∈ , then Eercv ′∈)( ; and if fe <  and Ef ′∈ , then Ee ′∈ , fe,∀  

• )( EE ′×′∩=<<′  
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We let ),( <Epre  denote the set of all prefixes of a visual order ),( <E , and for a set Λ  of 

visual orders, we let }),(:),(),{()( Λ∈<<∈<′′=Λ EEpreEpre . For a sequence diagram SD 

describing a set Λ  of visual orders, we let prefix(SD) be the sequence diagram describing the 

set )(Λpre  of visual orders. 

Given two CallBehaviorActions n and m, the interruption of n by m defines a sequence 

diagram mn SDSDprefixSD   )(  seq= , where nSD  (resp. mSD ) is the sequence diagram 

describing the behavior of the collaboration invoked by n (resp. m). 

3.1 Traces 

A choreography defines a set of traces, one for each possible complete path through the 

choreography, and for each possible ordering of events within that path. To simplify the 

definition of traces, we propose to flatten the choreography graph by eliminating the 
CallBehaviorActions that invoke a collaboration behavior defined by an activity diagram, and 

replacing them by the activity diagram describing the behavior of the invoked collaboration. 

A complete choreography path (i.e. starting at the initial node and ending at one or more final 

nodes) can then be described as a directed acyclic graph ),( in AANp ∪=  with the following 

characteristics: 

a) The nodes (N) are CallBehaviorActions. 

b) The directed arcs (both normal, nA , and interrupting ones, iA ) represent immediate 

precedence relations, so that, given two CallBehaviorActions n and m, 

i. if a normal directed arc links n to m, then n⇝m in the choreography graph. 

ii. if an interrupting directed arc links n to m, then n is inside an interruptible region R in  

the choreography graph and u⇝m, where u is the source node of the interrupting edge 

that leaves R. 

c) If a node n has no incoming arcs, then 0v ⇝n in the choreography graph. We say n is an 

initial node of the path. If a node n has no outgoing arcs, then n⇝m, with Fm V∈ , in the 

choreography graph. We say n is a final node of the path. 

Fork nodes describe concurrent execution of sub-collaborations in a choreography and thus 

create branching in paths. Join nodes, on the contrary, join several branches back into a single 

one. This is depicted in Figure 1(b), which shows the directed graph of one of the possible 

paths through the choreography in Figure 1(a). Decision nodes and interrupting edges give 

rise to alternative paths. Figure 1(c), for example, shows the path through the choreography 
in Figure 1(a) that results from traversing the interrupting edge (i.e. when the interruption 

takes place). We note also that loops in a choreography give rise to a number of alternative 

paths, each of them showing the execution of a different number of iterations. 

Each choreography path defines one or more global visual orders of events. To construct 

each global visual order, we first select one visual order for each CallBehaviorAction in the 
path (note that a CallBehaviorAction may invoke a collaboration with several visual orders 

associated). Thereafter we compose in weak sequence the visual orders of each pair of 

CallBehaviorActions that are interconnected by an arc in the path. Finally, we obtain the 

transitive closure of all the composite visual orders. This process is formally described by the 

BuildVisualOrder algorithm (see below). We note that in the case of 

CallBehaviorActions with outgoing interrupting arcs, we need to consider the prefixes of 

their associated visual orders (see function vo(n)). 
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Algorithm BuildVisualOrder  

∅←Ψ  //Set of visual orders 

foreach initial node 0n  

foreach )(),( 000 nvoE ∈<  

   ProcessArc ),,,( 0000 <EEn  

end 

end 

end 

 

Procedure ProcessArc ),,,( pp <EEn n  

foreach in),( AAmn ∪∈  

  foreach )(),( mvoE mm ∈<  

   mEEE ∪← p  

   )}()(:),{(p mmnnmnmnm eeEEee φφ =×∈∪<∪<←<   //weak sequencing 

   ProcessArc ),,,( <EEm m  

  end 

end 

if n is a final node then )},{( *

pp <∪Ψ←Ψ E  //Obtain the transitive closure 

end 
 

Function 


 ∈

Λ

Λ
=

otherwise ,

),(exist not  doesit  if ,

)(
)(

i

n

n Amn

pre
nvo  

 

 

Given a choreography Ch, a path p through Ch, and a global visual order ),( <E  defined by 

p, together with a mapping : Eλ Σ→  associating each event with a communication action 

(see Section 2), we say that a word )()()( 21 E
eee λλλω K=  over the alphabet *Σ  is a trace 

of Ch iff i je e<  implies i j< , and i je e≠  for i j≠ . We let L(Ch) denote the set of all traces 

of a choreography Ch.  

4 Directly realized system 

We consider a very straightforward approach to the realization of a distributed design from 

a choreography, which we call direct realization. The direct realization assumes that there is 

one system component for each composite role defined in the choreography, whose dynamic 
behavior is modeled in terms of message receptions and message sendings, and the order in 

which these actions may occur. The dynamic behavior pA  of each component or role p is 

described by an activity diagram, which we assume has a single FIFO input buffer *
Mb ∈  

where messages received from all sources are kept until they are processed. This activity 

diagram is obtained by projecting the choreography onto the role played by the component 
(i.e. removing any action executed by other roles). No extra coordination messages or 

attributes are added during the projection. The set of system components, or role behaviors, 
obtained by direct realization of a choreography Ch is called directly realized system, and it 

is denoted as Rp∈= )( pCh AA , where R is the set of roles involved in the choreography. We 
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assume the realized system components communicate by message passing over error-free 

channels. 

To construct the activity diagram pA  for a role p, we first obtain a flattened choreography 

by eliminating those CallBehaviorActions that invoke a collaboration behavior defined by an 

activity diagram; and replacing each of these actions by the activity diagram representing the 

behavior of the called collaboration, assuming that there are no recursive calls. We then 

project the flattened choreography onto role p as follows: 

• each CallBehaviorAction a where p does not participate is eliminated (i.e. a new 

activity edge is added from each node directly leading to a to each other node that can 

be directly reached form a; the a node and all its incoming and outgoing edges are then 

removed) 

• each CallBehaviorAction that invokes a collaboration defined by a sequence diagram 

SD where p participates is replaced by a set of interconnected SendSignalActions and 
AcceptEventActions representing the sequence of local actions performed by p in SD.  

The syntax of each pA  is similar to the syntax of choreography graphs, except that: 
AV  is 

no longer a set of CallBehaviorActions, but a set of SendSignalActions and 

AcceptEventActions; and Ω  is a set of labels of the form p!q(m) and p?q(m). Its semantics is 

based on token flow. At any point in time, one or more tokens are present in an activity 

diagram. An action may begin execution as soon as it receives a token, provided that any 

other execution condition is satisfied (e.g. an AcceptEventAction can only be executed if an 

appropriate message reaches the first position of the input buffer). When the action completes 

execution, a token is offered to its outgoing edge. Fork nodes split a flow into multiple 

concurrent flows, so that when a fork node receives a token, copies of the token are created 

and offered to each of the fork’s outgoing edges. Join nodes synchronize multiple flows by 

offering a token on their outgoing edge whenever tokens are offered on all their incoming 

edges. Decision nodes offer the same token to all their outgoing edges, but only one of the 

target nodes may accept it (if several target nodes may be able to accept the offered token, a 

non deterministic choice is made). Finally, all tokens and behaviors inside an interruptible 
region are terminated whenever a token leaves the region via an interrupting edge.  

From the explanation of the token-game semantics we conclude that for each pA  there 

exists, at any point in time, a set ∆  of enabled actions (i.e. actions that are being offered a 

token) and may in principle be executed. Some of these actions may be mutually exclusive, 

such that if one of them is eventually executed, the other ones could no longer be executed. 

Mutually exclusive actions are those that are offered the same token by a decision node (or a 
chain of decision nodes). For an action ∆∈a , we denote by ∆⊂)(aMExc  the set of enabled 

actions that are mutually exclusive with a. More formally, we define 

),(,:{)( aParaaaaaMExc ∉′≠′′= d⇝ ,a′ d⇝ }a, DNd ∈ , where Par(a) is the set of actions 

specified to be executed concurrently with a (i.e. actions that appear in any path of pA  that 

contains a, but in different branches of the path than a). Some of the enabled actions may be 

are so-called interrupting actions, so that if they are eventually executed, other actions would 

cease being enabled. Interrupting actions are those that can be reached via an interrupting 

edge without traversing any other action node. For an interrupting action ∆∈a , we denote 

by ∆⊂)(aInt  the set of enabled actions that a would interrupt if executed. More formally, 

we define mnannRaRaaInt ii(,,:{)( →∨→′∆∈′= >> ⇝ },), A IRVna ∈∈  (here we 

assume that the interrupting edge’s source node (n) is an AcceptEventAction that is executed 

when a given external event happens). 



7 

A snapshot of the execution of an activity diagram pA  at a given point in time  is called a 

configuration, and is described by a tuple ),,( Tbc ∆=  consisting of the set ∆  of enabled 

actions, the content b of the input buffer and the set T of states of the activity’s join nodes at 

the given point in time. The state Ttv ∈  of a join node v is the number of tokens that v has 

received on its incoming edges since the last time a token was offered to its outgoing edge.  

For an pA , the transition from a configuration ),,( Tbc ∆=  to a configuration 

),,( Tbc ′′∆′=′  upon the execution of an action a, written cc
a ′→ , is possible if ∆∈a  and 

either 

a) a is a SendSignalAction, or 

b) a is an AcceptEventAction with mbp?q(m)µ(a)   and , ω==  (i.e. message m is the first 

in the input buffer) 

In the new configuration ),,( Tbc ′′∆′=′ , some of the actions that were enabled in c may no 

longer be it, while new actions may become enabled. The actions that are no longer enabled 
are (see (1) below), in addition to a itself, the actions interrupted by a (if a was an 

interrupting action), the actions that are mutually exclusive with a, and any interrupting 
action associated with an interruptible region that no longer contains enabled actions after the 

execution of a (note that for such an interrupting action b, we would have }{)( abInt =  when 

a was executed). The new actions that become enabled are the actions that receive the token 

that is placed on a´s outgoing edge after its execution (see (2) and (4) below and note that if a 

leads through some path to a join node u that has not yet received tokens on all its other 

incoming edges, which is controlled by tu, then u keeps the offered token and no action is 

enabled in that path), and if any of those actions are inside interruptible regions, the 

interrupting actions associated with those interruptible regions (see (3) below). The new set 
∆′  of enabled actions is formally defined as: 

}}{)(:{)()(}{ abIntbaMExcaInta =−−−−∆=∆′                        (1) 

A)(  VaterNodeGetTokenAf ∩∪                                 (2) 

∈→∨→∪ mnbnb ii(:{ ⇝ },)(,,), A IRVaterNodeGetTokenAfccRnRb ∈∩∈>>        (3) 

where 

=)(aterNodeGetTokenAf                                    (4) 

)),1}:{((,:,,{ JA11 −→<∧∈∨∈→→→ ivnnnn vxxtVvVvvvavv
n

KK  

)}1)),1}:{((( JJA nivxxtVvVvVv iviii i
<≤−→=∧∈∨∉∧∉  

The new input buffer in c′  is defined as: 





==
=′

mbp?q(m)µ(a)a

ab
b

  and   withtActionAcceptEven an is  if ,

ActionSendSignala  is  if ,

ωω
 

and the state Ttv
′∈′  of each join node JVv ∈  in c′  is defined as: 

 


 ∈∩∈

∈

→+
=′

otherwise ,

, )(  if ,}:{mod)1( J TtaterNodeGetTokenAfVv

Tt

vxxt
t

v

v

v

v  
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A global configuration C of a system of role activity diagrams Rp∈= )( pCh AA  is the set of 

all local configurations at a given point in time, that is, }:{ RpcC p ∈= . A transition from a 

global configuration }:{ RpcC p ∈=  to a global configuration }:{ RpcC p ∈′=′  upon the 

execution of an action a, written CC
a ′→ , is possible if  ),,( pppp TBc ∆=∃  and 

),,( pppp TBc ′′∆′=′∃  such that p

a
cc ′→ , and 

(i) if a is a SendSignalAction with q(m)pµ(a) != , then ),,(  qqqq Tbmc ∆=′  and rr cc =′  for 

pr ≠  and qr ≠ ; 

(ii) if a is an AcceptEventAction with p?q(m)µ(a) = , then rr cc =′  for pr ≠ .  

An execution of ChA  is a sequence of global transitions n

aaa
CCC n→→→ K21

10 , 

where }:}):0{,, )({( JA00 RpVvVvterNodeGetTokenAfC
ppp ∈∈∩= ε  is the global initial 

configuration (i.e. a configuration where each role activity diagram has enabled only the 
actions that can be reached from its initial node, has its input buffer empty and the state of 

each of its join nodes is set to zero). An execution generates a trace 1 2 na a a… . We say an 

execution is successful if it ends in the global final configuration 

}:}):0{,,{( Jf RpVvC
p ∈∈∅= ε  (i.e. a configuration where each role activity diagram has 

no enabled actions, has its input buffer empty and the state of each of its join nodes is set to 

zero). A successful execution generates a complete trace. The set of complete traces of all 

successful executions of ChA  is denoted by )( ChAL .  

5 Directly realizability 

Definition. A choreography Ch is directly realizable if the following two conditions are 
met:  

(i) The set of complete traces generated by the directly realized system is equal to the set 

of complete traces defined by the choreography, that is, )()( ChLAL =Ch . 

(ii) Each trace generated by the directly realized system can always be extended to a 

complete trace.  

The second condition implies that from any reachable system configuration (which was 

reached by a particular execution sequence) a global final configuration can be reached 

(through the extended complete trace). We say then that the system is stuck-free (see also 

[1]and [2]). 

6 Propositions 

We present now some propositions regarding the realizability of sequential compositions of 

collaborations. Before that, we introduce some definitions. 

A role is an initiating role of a collaboration C if it takes the initiative to start the 

collaboration (i.e. the first local action it performs within C is not preceded by any other local 

action within C (by any other role)). The terminating roles are defined similarly. In the 
following, we will say that a composite-role of a collaboration is the initiating (resp. 

terminating) role of a sub-collaboration if it is bound to the initiating (resp. terminating) role 
of that sub-collaboration. 
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Definition 2 (weak-causality). A weak sequential composition of two collaborations, 

CC w 21o , is weakly-causal if each initiating composite role of C2 participates in C1. 

Definition 3 (send-causal composition).  A composition CC w 21 o  is send-causal if the 

composite role initiating C2 is either the terminating role of C1 or the role that performs the 

last sending event of C1. 

Proposition 1. A strong sequential composition of two directly realizable collaborations, 

CC s 21o , is directly realizable iff it is localized, that is, if all terminating actions of C1 and all 

initiating actions of C2 are performed by the same composite role. 

Proof. (⇐) In order to prove that the composition is directly realizable, we need to prove that 

(1) ChA  is stuck-free, and (2) )()( ChCh ALL = . We prove these two conditions with help of 

the following property, which is always true if the sequential composition is localized: (P) 

each role is completely finished in 1C  before it sends or receives any message in 2C . 

Proving that ChA  is stuck-free is straightforward. Since 
1C  and 

2C  are both directly 

realizable, a role activity diagram may only get stuck if either there is a race and it receives a 

message from 
2C , while still participating in 

1C , or if it receives an orphan message from 
1C  

while already participating in 2C . However, due to P, neither of these cases is possible, 

which proves (1). 

Proving that )()( ChCh ALL =  is the same as proving that L(Ch)⊆L(ACh) and 

L(ACh)⊆L(Ch). The former is simple to see, as a result of the direct realization algorithm. To 

prove that L(ACh)⊆L(Ch) let us suppose that L(ACh)⊈L(Ch) and show that it leads to a 

contradiction. If L(ACh)⊈L(Ch), then )(1 ChAL∈=∃ kee Kω  and )(ChL∉ω . The latter 

might only be possible if, for any ji < , either (a) ∧∈ 1, Eee ji ei≮1ej; (b) ∧∈ 2, Eee ji ei≮2ej; 

or (c) )()(, 12 jiji eeEeEe φφ =∧∈∈ . Since 1C  and 2C  are directly realizable, neither (a) nor 

(b) can be true. And due to P1, (c) cannot either be true. We reach a contradiction, so 

L(ACh)⊆L(Ch). This proves (2). 

Proving the other direction of the clause (⇒) is easy by contradiction assuming that the 
composition is not localized. (End of proof) 

Proposition 2. A weakly-causal sequential composition of two directly realizable 

collaborations, CC w 21o , is directly realizable if no composite role participating in C1 

participates with a non-initiating role in C2. 

Proof. We just need to prove that (P) each role is completely finished in 1C  before it sends or 

receives any message in 2C . Then, following the same reasoning used in the proof of 

Proposition 1, we can easily prove that the direct realization of the composition is stuck-free 

and it generates a set of complete traces equal to the ones defined by the composition. 
To prove P we need to consider two possible cases for a role p: (1) it does not participate in 

1C ; and (2) it participates in both 1C  and 2C . Case (1) is trivial. In case (2), according to the 

proposition’s text, p is an initiating role in 2C  and will therefore always begin its 

participation in that collaboration with a message sending s. The direct realization algorithm, 
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and the direct realizability of 1C , ensure that s will never happen until p has executed all 

actions in 1C . Now, since 2C  is directly realizable, any other actions performed by p in 2C  

will always happen after s, and will therefore always happen after p is finished with 1C . This 

proves P. (End of proof) 

Proposition 4. A send-causal sequential composition of two directly realizable 

collaborations, CC w 21o , is directly realizable 

• over a communication service with in-order delivery if whenever a composite role plays 

a terminating role in C1 and a non-initiating role in C2, then the last message it 

receives in C1 and the first one it receives in C2 are sent by the same peer-composite 
role; or 

• over a communication service with out-of-order delivery only if no composite role plays 

a terminating sub-role in C1 and a non-initiating sub-role in C2. 

Proof. We just need to prove that (P) each role is completely finished in 1C  before it sends or 

receives any message in 
2C . Then, following the same reasoning used in the proof of 

Proposition 1, we can easily prove that the direct realization of the composition is stuck-free 

and it generates a set of complete traces equal to the ones defined by the composition. 

To prove P we need to consider only two cases: (1) a role p plays a non-terminating sub-role 

in 
1C  (i.e. ends with a sending) and a non-initiating sub-role in C2; and (2) a role p plays a 

terminating sub-role in 1C  and a non-initiating sub-role in C2. The other cases are covered by 

Proposition 3 (since send-causality implies weak-causality). For case (1) we note that, since 

the sequential composition is send-causal and 1C  is directly realizable, 1C  must be send-

causal (otherwise either the composition could not be send-causal or 
1C  would not be directly 

realizable). Then, the last sending by p in 1C  will always happen before the first sending in 

C2 and, thus, before the first reception by p in C2, and before any other action by p in C2 (due 
to direct realizability of C2). For case (2), the condition in the proposition ensures that there is 

no race between the last reception by p in 1C  and its first reception in C2; and given that C1 

and C2 are directly realizable, this guarantees that p is finished with C1 before it sends or 

receives any message in 2C . This proves P. (End of proof) 
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